Review - Unit IV

Name:	

Significance Tests Steps:

1) Define the parameter

p = the proportion of...(the population).. that...(does what?)..

Or

 μ = the mean....

Write hypotheses (symbols and words)

$$H_o: p =$$

$$H_o: \mu =$$

$$H_a: p>, < or \neq$$

$$H_a: \mu > < or \neq$$

2) CLT – describe the sampling distribution

Shape – normal IF conditions are met (verify they are met!)

Center = $p_o or \mu_o$

Spread - calculate standard deviation

Draw a sketch!!!!

- 4) Find the test statistic (z or t) and p-value (probability)
- 5) Write a conclusion

Interpret your p-value.

Is p-value significant and at what level?

Reject H_o (small p-value) or fail to reject H_o

Refer to conditions – SRS and sample size – are you assuming anything – do you have reason to doubt the validity of the test?

Make a conclusion IN CONTEXT!!!!!

	Proportions	Mean
CLT	Approximately normal - if conditions	Approximately normal – if
Describes the sampling	are met	conditions are met
distribution – all possible		
samples of size n.	Mean of $p = \mu_{\hat{p}} = p$	Mean of $\overline{x} = \mu_{\overline{x}} = \mu$
Shape, Center, Spread		
	Standard deviation of	Standard deviation of
	p(1-p)	$\overline{x} = \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$
	$\hat{p} = \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$	\sqrt{n}
Conditions	$np \ge 10$ and $n(1-p) \ge 10$	$n \ge 30$ or population is normal
36		ana a
	SRS from population of interest	SRS from population of interest
Confidence intervals	$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$\overline{x} \pm t^* \frac{s}{\sqrt{n}}$
Est. ± (crit. Value)(St.	$P^{\perp 2}\sqrt{\frac{n}{n}}$	\sqrt{n}
Dev. Of est.)	(1-PropZInt)	(TInterval)
		*Can use Z if you know σ
	CHECK CONDITIONS – using	
	\hat{p} since you don't have a p	CHECK CONDITIONS
Significance Test	$H_o: p =$	$H_o: \mu =$
	$H_a: p>, < or \neq$	$H_a: \mu >, < or \neq$
	The number in the hypotheses above	The number in the hypotheses
	is always a parameter – NEVER a	above is always a parameter –
	statistic.	NEVER a statistic.
	CHECK CONDITIONS!!!!	CHECK CONDITIONS!!!!
	$z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$	$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ or $z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$
	p-value = $Pr(z)$) =	p-value = Pr(t) =
	(1-PropZTest)	(TTest or ZTest if σ is known)